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Abstract— In this paper, filtering characteristics of guided waves in a rectangular waveguide with corrugations on 
the side walls are investigated. The parameters of the sidewalls offer an added degree of freedom to the filter 
designer for controlling the width of the stopband region. A rectangular waveguide with sinusoidal and square 
corrugations, that are uniform along the structure depth, is simulated using two commercial full-wave solvers, the 
HFSS and CST Studio Suite. However, the frequency response for a uniform waveguide with sinusoidal 
corrugation has the undesirable effect of high ripple levels, which corrupts the filter response without a clear 
isolation between stop-band and pass-bands. Apodization profile is introduced to decrease the level of the ripples. 
The Gaussian apodization profile has been examined. The square corrugation profile has been used to investigate 
the multi-bands in the frequency response. 
 
Keywords— Apodization profile, CST, HFSS, inverted notch filter, level of the ripples, microwave filters, periodic 
structure. 
 

I. INTRODUCTION 

Waveguides with a periodic structure are commonly used as wave filters and couplers in 
various applications. Periodic structures are built in the waveguide to transfer their function 
from a device that merely guides and/or confines the electromagnetic waves at microwave 
frequencies, to that which can be used as a filter or a coupler, or even a mode converter. Such 
waveguides with periodic structures are called corrugated waveguides; and they can be of 
different types and shapes. 
Corrugated waveguides can be used as a microwave filter due to the constructive and 
destructive behavior of the wave propagating within the guide. The corrugation could be 
either uniform or non-uniform; and it could be of different shapes like sinusoidal or square 
corrugations. 
The filtering characteristics of corrugated waveguides can be adjusted by changing the design 
of the unit cell that is repeated and joined together to form the whole structure. 
The design of the unit cell that forms the periodic structure identifies the filtering properties 
of the structure. Therefore, transmission properties of the waveguide can be altered by 
changing the corrugation profile. 
The perturbation method of multiple scales [1], [2] was used by many researchers to analyze 
the propagation of waves in both bounded and unbounded waveguides with different 
corrugation profiles [3]-[10]. The analysis of wave propagation in corrugated waveguides 
using the perturbation technique leads to a system of coupled-mode ordinary differential 
equation that may be solved numerically or sometimes analytically to calculate the filter 
response. 
In [11]-[13], different approaches have been used to handle the filtering characteristics of 
corrugated waveguides. In [11], a novel way, asymptotic corrugations boundary conditions 
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"ACBC", is used to solve all-four walls axially corrugated rectangular waveguides. This 
method considers two linear systems of equations: one pertains to the ACBCs of the left and 
right corrugated walls; the other is associated with those of the upper and lower corrugated 
walls before combining them. In [12], a band-pass filter using an improved structure of 
rectangular waveguide is proposed. The filter consists of cascade resonant cavities, each of 
different width to broaden the suppression of the stop-band region. In [13], a simple quasi-
analytical method to design classical corrugated rectangular waveguide low pass filters is 
presented. The proposed method gives a final closed form expression for the filter dimension. 
The filtering characteristics of corrugated waveguides are due to the Bragg reflection 
phenomenon. Bragg reflection is a consequence of cumulative reflections in the periodic 
structure leading to the presence of a forbidden gap in the electromagnetic spectrum [14], [15]. 
Hence, it is natural to find stop-bands, pass-bands and band-gaps in a periodic structure. 
In a waveguide having a sinusoidal periodic corrugation, the stop-band occurs above the 
cutoff of each mode. These stop-bands are characterized by a first-order Bragg condition that 
couples a forward mode with its reflection. Thus, for TE waves in a parallel-plate waveguide, 
for instance, the first stop-band appearing above the cutoff corresponds to the reflection of the 
dominant 𝑇𝑇10 mode. 
The problem of a sinusoidal wall corrugation was treated by Nayfeh and Asfar [3], where the 
same sinusoidal corrugation existed on both walls of a parallel-plate waveguide. Sinusoidal 
corrugation is more difficult to manufacture than, for example, a square- wave corrugation. 
The latter provides extra periods required to realize the higher-order stopbands through the 
harmonics of the wall corrugation. Harmonics of the square-wave cause higher-order Bragg 
conditions to be satisfied for all propagating modes. 
Simulation for the proposed geometries has been handled using two commercial software 
packages, Ansoft High Frequency Structure Simulator (HFSS) [16] and CST Microwave 
Studio Suite [17]. HFSS is based on the Finite Element Method (FEM). FEM is a method 
based on solving partial differential equations. It subdivides space in elements. Fields inside 
these elements are expressed in terms of a number of basic functions. These expressions are 
inserted into the function of the equations; and the variation of the function is made zero. This 
yields a matrix eigenvalue equation whose solution yields the field at the nodes. FEM 
normally formulated in the frequency domain. This means that the solution has to be 
calculated for every frequency of interest. Useful features of HFSS include its automatic 
adaptive mesh generation and refinement, which in most cases free the designer of worrying 
about which mesh/grid to choose. The CST Microwave Studio is based on the Finite 
Integration Technique (FIT). It allows choosing the time domain as well as the frequency 
domain approach. The flagship module of CST MWS is the transient solver. In this solver, the 
automatic mesh generator detects important points inside the structure (fixpoints) and locates 
mesh nodes there. The user can manually add fixpoints on a structure, and fully control the 
number of mesh lines in each coordinate with regards to the specified wavelength. A problem 
observed with CST is a ripple in the frequency response in case tool settings are not 
appropriate; this is due to the fact that the flagship of CST is inherently a time domain solver. 

II. FORMULATION 

To analyze the problem of interest, one needs to solve the Helmholt'z equation and then apply 
the boundary conditions. Those boundary conditions are when the tangential components of 
the electric field equals zero. The propagation of the dominant mode of transverse electric 
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(𝑇𝑇10 ) waves in a rectangular waveguide whose lateral walls have different corrugation 
profiles such as sinusoidal and square undulations is considered in the following subsections. 
 

A) Rectangular Waveguide with Sinusoidal Corrugations Profile 
In this section, the TE waves in a rectangular waveguide as shown in Fig. 1 are considered. 
Surfaces at the right and left walls are assumed to perfectly conduct and have a distortion 
function of the form  

 
Fig. 1. Top-view for a rectangular waveguide of the sinusoidal wave corrugation 

 

𝑥� = 𝑑1𝑠𝑠𝑠 (𝑘�𝜔�̃�)   at 𝑥� = 0                                                                                                  (1) 

𝑥� = 𝑎 + 𝑑2𝑠𝑠𝑠 (𝑘�𝜔�̃� + 𝜃)   at 𝑥� = 𝑎                                                                                                (2) 

where 𝑥�  and �̃� are dimensional coordinates; 𝑑1 and 𝑑2  are the amplitudes of the sinusoidal 
corrugation; 𝑎  is the unperturbed separation of the sides; 𝑘�𝜔  is the wave number of the 
corrugation; 𝜃 is the phase difference between the two corrugated walls; and 𝑙 is the length of 
the corrugated section. The coordinate is made dimensionless by choosing the average 
separation 𝑎 to normalize all length quantities. 
The field component 𝑇𝑦  has been selected as a dependent variable using the standard 
procedure of arranging Maxwell's equations [18]. The governing equation for 𝑇𝑦 is given by: 

�� 𝜕
2

𝜕𝑥2
+ 𝜕2

𝜕𝑧2
� + 𝑘0

2�𝑇𝑦 = 0                                                                                                  (3) 

where 𝑘0 = 𝜔�𝜇0𝜀0 is the free space wavenumber. The boundary conditions associated with 
the governing equation are given by: 

𝑇𝑦 = 0,   at 𝑥 = 𝛿𝑠𝑠𝑠 (𝑘𝜔𝑧)                                                                                                     (4) 

𝑇𝑦 = 0,   at 𝑥 = 1 + 𝛼𝛿𝑠𝑠𝑠 (𝑘𝜔𝑧 + 𝜃)                                                                                     (5) 

Here, 𝑥 and 𝑧 are the dimensionless coordinates; 𝛿 = 𝑑1
𝑎

 is a dimensionless small parameter; 

𝛼 = 𝑑2
𝑑1

 is the ratio between the amplitudes of sinusoidal corrugations. 

Following [1], the method of multiple scales can be used to solve (3) subjected to (4) and (5). 
The core of this method lies in the expansion of 𝑇𝑦 in a power series of 𝛿: 

𝑇𝑦(𝑥, 𝑧) = 𝑇𝑦
(0)(𝑥, 𝑧0, 𝑧1, 𝑧2) + 𝛿𝑇𝑦

(1)(𝑥, 𝑧0, 𝑧1, 𝑧2) + 𝛿2𝑇𝑦
(2)(𝑥, 𝑧0, 𝑧1, 𝑧2)+. ..             (6) 

In accordance with the method of multiple scales 𝑧0 = 𝑧, 𝑧1 = 𝛿𝑧0, and 𝑧2 = 𝛿2𝑧0.  
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Following the procedure described in [19], the system of coupled mode equations of second 
order in 𝛿 that represents the incident and reflected wave amplitudes, 𝑢+ and 𝑢− is given by: 

�𝐷𝑧(𝑢+)
𝐷𝑧(𝑢−)� = �

𝑗𝛿2𝐺1 𝛿𝑄1 �1 + 𝛿 𝜎
2𝑘
�

𝛿𝑄2 �1 + 𝛿 𝜎
2𝑘
� 𝑗𝛿[𝜎 − 𝛿𝐺1]

� �𝑢
+

𝑢−
�                                                           (7) 

The operator 𝐷𝑧 stands for the derivative with respect to z. The entries of the system in (7) are 
given by: 

𝑄1 = −�𝜋
2

2𝑘
� �1 − 𝛼𝑒−𝑗𝑗�                                                                                                         (8) 

𝑄2 = −�𝜋
2

2𝑘
� �1 − 𝛼𝑒𝑗𝑗�                                                                                                             (9) 

𝐺1 = 𝜋2

4𝑘
�[1 + 𝛼2] �𝛽𝛽𝛽𝛽ℎ (𝛽)

𝛽𝑠𝑠ℎ (𝛽)
− 0.5 �𝜋

𝑘
�
2
� + 2𝛼𝛼𝛼𝑠 (𝜃) � 𝛽

𝛽𝑠𝑠ℎ (𝛽)
+ 0.5 �𝜋

𝑘
�
2
��                    (10) 

where 𝑘 is the propagation constant generally given by 𝑘𝑚𝑠 = �𝑘0
2 − (𝑚𝜋

𝑎
)2 − (𝑠𝜋

𝑏
)2; and 𝜎 

is a detuning parameter representing the Bragg condition (𝑘𝜔 = 2𝑘) at the center of the 
stopband region. This parameter is given by: 

𝜎 = 2𝑘−𝑘𝜔
𝛿

                                                                                                                                 (11) 

The parameter 𝛽 is given by 𝛽 = �(𝑘 + 𝑘𝜔)2 − 𝑘0
2. The system in (7) is subject to the two-

point boundary conditions: 

𝑢+(0) = 1                                                                                                                           (12) 

𝑢−(𝑙) = 0                                                                                                                               (13) 

Waveguide dimensions have been selected for the waveguide to be operated in the S-band. 
Therefore, the parameters are 

TABLE 1 
PARAMETER VALUES FOR THE PROPOSED RECTANGULAR WAVEGUIDE 

Parameter Value Parameter Value Parameter Value 

𝑎 7.5 [𝛼𝑐] 𝑓 3 [𝐺𝐺𝑧] 𝑘10 = �(
2𝜋𝑓
𝛼 )2 − (

𝜋
𝑎)2 46.832 [𝑐−1] 

𝑘𝜔 = 2𝑘 93.6641 [𝑐−1] 𝜆𝜔 =
2𝜋
𝑘𝜔

 6.708 [𝛼𝑐] 𝑙 = 20𝜆𝜔 134.16 [𝛼𝑐] 

 
Fig. 2 shows an excellent agreement between HFSS and CST for a power reflection 
coefficient. It can be observed that the frequency response contains only a single stop-band. 
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Fig. 2. Reflection coefficient for rectangular waveguide with sinusoidal wave corrugation for α=1, θ=π, and 

δ=0.03a 
 

A.1. Rectangular waveguide of sinusoidal corrugations profile with phase reverse 
 

In this subsection, a rectangular corrugated waveguide, whose sinusoidal corrugation reverses 
phase halfway along the waveguide, is investigated [20]. Fig. 3 shows a phase reverse applied 
at half the structure depth 𝑙. This is made by changing the sign of corrugation depth amplitude 
𝛿 for 𝑙 > 𝑙

2
. The correspondence system for the case of a single phase reversal is: 

�𝐷𝑧
(𝑢+)

𝐷𝑧(𝑢−)� = � 0 𝛿𝑄1
𝛿𝑄2 𝑗𝛿𝜎� �

𝑢+
𝑢−
� , 𝑙 < 𝑙

2
                                                                               (14) 

�𝐷𝑧(𝑢+)
𝐷𝑧(𝑢−)� = � 0 −𝛿𝑄1

−𝛿𝑄2 𝑗𝛿𝜎 � �𝑢
+

𝑢−
� , 𝑙 > 𝑙

2
                                                                         (15) 

 

 
Fig. 3. Top-view for a rectangular waveguide of sinusoidal wave corrugation with phase revers at 𝑙

2
 for α=1, θ=π, 

and δ=±0.03a 
 

The 𝑆11result for this structure is shown in Fig. 4. It can be noted that as a result of reversing 
the corrugation depth amplitude 𝛿 sign, an inverted notch filter, which is a narrow pass-band 
filter in the region of the stop-band filter region, has been created. 
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Fig. 4. Reflection coefficient for a rectangular waveguide of sinusoidal wave corrugation with phase reverse at 𝑙

2
 

for α=1, θ=π, and δ=±0.03a 
 

A.2. Rectangular waveguide of non-uniform sinusoidal corrugations with 
Gaussian apodization profile 
 
The case of non-uniform corrugation can be handled by introducing an apodization profile 
into the boundary of the uniform corrugated waveguide [21], as suggested in (16) and (17): 

𝑇𝑦 = 0   at 𝑥 = 𝛿𝑓(𝑧1)𝑠𝑠𝑠 (𝑘𝜔𝑧)                                                                                       (16) 

𝑇𝑦 = 0   at 𝑥 = 1 + 𝛼𝛿𝑓(𝑧1) 𝑠𝑠𝑠(𝑘𝜔𝑧)                                                                             (17) 

Following the same procedure in [19] with (16) and (17) considered boundary conditions 
corresponding to the governing (3), the system that represents the solution of first-order 
problem would take the form: 

�𝐷𝑧(𝑢+)
𝐷𝑧(𝑢−)� = �

0 𝛿𝑓(𝑧)𝑄1
𝛿𝑓(𝑧)𝑄2 𝑗𝛿𝜎 � �𝑢

+

𝑢−
�                                                                            (18) 

The system in (18) corresponds to 𝑢+(0) = 1 and 𝑢−(𝑙) = 0. In this paper the following 
apodization profile has been introduced to a rectangular waveguide with sinusoidal 
corrugation as shown in Fig. 5. The resultant reflection coefficient is shown in Fig. 6. 

 

 
Fig. 5. Top-view for a rectangular waveguide of non-uniform sinusoidal wave corrugation with Gaussian 

apodization profile 
 

𝑓(𝑧) = 𝑒−𝛽0((𝑧𝑙−0.5)2)                                                                                                          (19) 
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where 𝑙 is structure depth; and 𝛼0 is an arbitrary constant. Fig. 7 shows a comparison of power 
reflection coefficient in a uniform and non-uniform rectangular corrugated waveguide. 
Introducing the apodization profile 𝑓(𝑧) has decreased the level of ripples and broadened the 
bandwidth of the stop-band region. A small drop in the amplitude of 𝑆11 can be observed. The 
drop could result from decrement in the amplitude of the corrugation depth 𝛿  which 
multiplying by an apodizing function causes. 

 
Fig. 6. Reflection coefficient for rectangular waveguide with non-uniform corrugation of Gaussian profile for α=1, 

θ=π, and δ=0.03a 

 
Fig. 7. Reflection coefficient comparison for rectangular waveguide with uniform and non-uniform corrugation for 

α=1, θ=π, and δ=0.03a 
 

B) Rectangular Waveguide with Square Corrugations Profile 
For a rectangular waveguide whose lateral walls are corrugated as a square wave is shown in 
Fig. 8, which is governed by Helmholtz's equation: 

𝛻2𝜓 + 𝑘0
2𝜓 = 0                                                                                                                (20) 

where 𝑘0 is the free-space wavenumber; and ψ is the field component. 

 
Fig. 8. Top-view for a rectangular waveguide of square wave corrugation 
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The boundary conditions are: 

𝜕2𝜓
𝜕𝑧2

+ 𝑘0
2𝜓 = − 𝜕2𝜓

𝜕𝑥𝜕𝑧
𝑓′𝑙(𝑧)   at the lower wall (𝑥 = 𝑓𝑙(𝑧))                                             (21) 

𝜕2𝜓
𝜕𝑧2

+ 𝑘0
2𝜓 = − 𝜕2𝜓

𝜕𝑥𝜕𝑧
𝑓′𝑢(𝑧)   at the upper wall (𝑥 = 1 + 𝑓𝑢(𝑧))                                     (22) 

where 𝑓′𝑙(𝑢)(𝑧) denotes the derivative of the wall corrugation function. Corrugation functions 
are taken as square waves of amplitude 𝐶 ≪ 𝑑 having a Fourier expansion: 

𝑓𝑙(𝑧) = 𝛿𝛼 ∑ 1
𝑚
𝑠𝑠𝑠(𝑐(𝑘𝑧 − 𝜃))𝑚=1,3,5,…                                                                           (23) 

𝑓𝑢(𝑧) = 𝛿 ∑ 1
𝑚
𝑠𝑠𝑠(𝑐𝑘𝑧)𝑚=1,3,5,…                                                                                       (24) 

where 𝑘 = 2𝜋
𝜆

; and 𝜆  is the spatial period of the corrugation; 𝛿 = 4𝐶
𝜋𝑑

 is the dimensionless 
corrugation depth; 𝜃 is the phase difference between the corrugation of the two walls; and 𝛼 is 
a constant allowing for a different corrugation amplitude at the lower plate. 
Fig. 9 shows the power reflection coefficient response for the square wave corrugated 
rectangular waveguide. Fig. 9 clearly shows a multi stop-band. 

 

 
Fig. 9. Reflection coefficient for a rectangular waveguide with square wave corrugation for α=1, θ=π, and δ=0.1d 

 
The square wave is formed of infinite harmonics. This could be the reason for having multi 
stop-band regions in the frequency response. This could explain the single stop-band in the 
frequency response that rises as a result of applying a sinusoidal wave as shown in Fig. 2. It is 
considered one of the infinite harmonics forming the square wave. 

III. CONCLUSIONS 

In this paper, filtering properties for a rectangular waveguide, with uniform sinusoidal and 
square corrugation, have been investigated. The uniform sinusoidal wave is considered as the 
dominant harmonic of a square wave, which gives a single stop-band in the frequency 
response as suggested in Fig. 2. The case of changing the sign of corrugation depth amplitude 
δ has also been taken into consideration. The result was a narrow pass-band (inverted notch) 
window in the stop-band filter region. This can be used in frequency demultiplexing. The first 
concern of this paper was the reduction of the high ripple level. This has been dealt with by 
introducing an apodization profile, which is a type of non-uniform corrugation. As a result, 
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the level of the ripples is decreased; and the bandwidth of the stop-band region is broadened. 
However, the slight weakness in the strength of the reflection, compared to the case of a 
uniform corrugation, is due to the decrease in the effective corrugation depth amplitude δ. The 
paper considers multi-bands in the frequency response by changing the corrugated walls into 
square wave corrugations. The square wave corrugation gives multi stop-band filter regions. 
These stopbands are corresponding to fundamental and higher harmonics in the square wave. 
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